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An Evaluation of Hierarchical Bayes Estimation for
the Two-Parameter Logistic Model

Abstract

Hierarchical Bayes procedures for the two-parameter logistic item response model were

compared for estimating item parameters. Simulated data sets were analyzed using two

different Bayes estimation procedures, the two-stage hierarchical Bayes estimation (HB2)

and the marginal Bayesian with known hyperparameters (MB), and marginal maximum

likelihood estimation (ML). Three different prior distributions were employed in the two

Bayes estimation procedures. HB2 and MB yielded consistently smaller root mean square

differences and mean euclidean distances than ML. The HB2 and MB estimates of item

discrimination parameters yielded relatively larger biases than the ML estimates. As the

sample size increased, the three estimation procedures yielded essentially the same bias

pattern for item discrimination. Bias results of item difficulty show no differences among the

estimation procedures. Tight prior conditions yielded smaller root mean square differences

and mean euclidean distances.

Key words: Bayes estimation, hierarchical prior, item response theory, marginal Bayesian

estimation, maximum likelihood estimation.
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Introduction

Ever since Birnbaum (1969) presented Bayes methods of estimating ability parameters,

a number of Bayesian approaches have been proposed under item response theory (IRT)

for estimating item and ability parameters. The key feature of the Bayesian approach

is its reliance upon simple probability theory that provides a theoretical framework for

incorporating prior information or belief into the estimation of parameters to improve

accuracy of estimates.

Currently the Bayesian approaches in IRT can be distinguished by whether the estimation

of item parameters takes place with marginalization over incidental ability parameters

(Mislevy, 1986; Tsutakawa & Lin, 1986) or without any marginalization (Kim, Cohen, Baker,

Subkoviak, & Leonard, 1994; Swaminathan & Gifford, 1982, 1985, 1986). The marginal

modes may provide better approximations to the posterior means in the presence of nuisance

parameters than the joint modes (Mislevy, 1986; O'Hagan, 1976; Tsutakawa & Lin, 1986).

This point has been empirically demonstrated by Kim et al. (1994), especially for small data

sets.

Since specification of priors in Bayesian analysis is a subjective matter, a number of

different forms of priors have been studies in estimation of item parameters. The hierarchical

Bayes approach, suggested by Good (1980, 1983), Lindley (1971), and Lindley and Smith

(1972), has been successfully applied to the estimation of item and ability parameters

(Mislevy, 1986; Swaminathan & Gifford, 1982, 1985, 1986). Kim (1994) presented a two-

stage hierarchical Bayes estimation of item parameters which involved in marginalization

over incidental ability parameters (i.e., marginal Bayesian estimation with a two-stage

hierarchical prior). Kim (1994) compared the item parameter estimates yielded by this two-

stage hierarchical Bayes estimation with those obtained via maximum likelihood estimation

and via other marginal Bayesian estimation procedures using LSAT-6 and LSAT-7 data sets

(Bock & Lieberman, 1970). He found that the item parameter estimates yielded by the

marginal Bayesian estimation procedures with different prior distributions were very similar.

Parameter estimates yielded by the empirical Bayes estimation procedure for LSAT-6 and

LSAT-7 were different from those yielded by other estimation procedures. However, these

results were based on limited examples. It is of interest, thus, to compare the characteristics

of item parameter estimates yielded by the two-stage hierarchical Bayes estimation with those

obtained via marginal Bayesian estimation with different priors and via marginal maximum
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likelihood estimation in a recovery study context.

Complete exploitation of the potential of the Bayesian estimation requires understanding

of its mathematical underpinnings, particularly the role of prior distributions in estimating

parameters. In a classical Bayesian approach, a single prior can be selected for the

ordinary parameters. It is possible to recognize some uncertainty in priors. When priors

are expressed in terms of family or class of prior, we call the parameters in the class of

priors as hyperparameters. Hyperparameters describe the distributional characteristics of

the prior information. It is sometimes also convenient to specify prior information on the

hyperparameters as well. This second prior is called a hyperprior and contains parameters

which are referred to as hyperhyperparameters (Good, 1980, 1983; Lindley, 1971, Lindley &

Smith, 1972).

In this paper, we first present marginal Bayesian estimation of item parameters with a

two-stage hierarchical prior distribution for the two-parameter logistic IRT model. Next,

we present empirical comparisons among two Bayes estimation procedures (i.e., the two-

stage hierarchical Bayes estimation and the marginal Bayesian estimation with known

hyperparameters) and the marginal maximum likelihood estimation procedure. Three

different priors were employed in the Bayes estimation procedures. It can be noted that point

estimates of the ability parameters do not arise during the course of the marginal Bayesian

estimation of item parameters. They are calculated after obtaining the estimates of item

parameters, assuming the item parameters to be known (Bock & Aitkin, 1981; Mislevy &

Bock, 1990). We do not discuss the estimation of ability parameters in this paper.

Theoretical Framework

IRT Model and Marginalization

Consider binary responses to a test with n items by each of N examinees. A response

of examinee i to item j is represented by a random variable where i = 1, . . . , N and

j = 1, . , n. The probability of a correct response of examinee i to item j is represented

by P(Yii = 1 lei, C) = P; (0i) and the probability of an incorrect response is given by

P(Yii = 010i, C) = 1 Pi (9i) = Qj(0i), depending on a real-valued ability parameter 0i

and a real- or vector-valued item parameter C. For the two-parameter logistic model, the

probability of a correct response has the form

1

P3(Bi) 1 + explaj(0,
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where = (a3, b3)' , and a3 and b.; are the item discrimination and difficulty parameters,

respectively.

For examinee i, there is an observed vector of dichotomously scored item responses of

length n denoted by yj= (y,i, , yin). Under the assumption of conditional independence,

the probability of y, given 0, and the vector of all item parameters, = (al, b1, , an, bn)i,

is
n

p(y,I0,, = H Pi ( Oi )Yii Qi (0i) 1 (2)
j=1

The marginal probability of obtaining the response vector y, for examinee i sampled from a

given population is

= (3)

where 8 is the parameter space and p(92) is a continuous population distribution of O.

Without loss of generality, we assume that ai are independent and identically distributed as

standard normal, Oi ti N(0,1). This assumption can be relaxed as the ability distribution

may be empirically characterized (Bock & Aitkin, 1981). The marginal probability of y, can

be approximated with any specified degree of precision by Gaussian quadrature formulas

(Stroud & Secrest, 1966) using

p(3,21) = p(yilXk, )A(Xk), (4)
Ic=1

where Xk are called the nodes and A(Xk) are the corresponding weights. Since we assume 0,

are randomly sampled from N(0,1), we may use Gauss-Hermite quadratures, for example,

Xk = ..VDCk' and A(Xk) = A(XPIN/Tr, where X,*, and A(X'k'') are obtained from Stroud and

Secrest (1966).

The marginal probability of obtaining the N x n response matrix y is then given by

N

p(3r1) = 11 P(yg) = 1(W), (5)
i=1

where /(Cy) may be regarded as a function of given the data y. Bayes' theorem tells us

that the posterior probability distribution for to the data y is proportional to the product

of the likelihood for given y and the distribution for prior to the data. That is,

P( I Y) =
P(Yi

p(Y)
/WY)PW,

where a denotes proportionality. The likelihood function represents the information about

obtained from the data through which the data y may modify our prior knowledge of A

(6)

4
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prior distribution represents what is known about unknown parameters before the data are

obtained. Prior knowledge or relative ignorance can be represented by such a distribution.

Parameter Estimation in IRT

Lord (1986) presented advantages and disadvantages of several parameter estimation

methods in IRT. Birnbaum (1968) and Lord (1980) recommend the estimation of the 0

and by joint maximization of their likelihood function

p(yle, = H H P3(0,i)Y13Q(001-Yu = 1(0,13r), (7)
i=1 j=1

where 0 = (01,...,ON)1. Especially, the item parameter estimation part for maximizing

/(0r, e) and the ability parameter estimation part for maximizing /(Oly, 4) are iterated to

obtain stable estimates of item and ability parameters.

Extending the idea of joint maximization, Swaminathan and Gifford (1982, 1985, 1986)

suggested that 0 and can be estimated by joint maximization with respect to these

parameters of the posterior density

P(9,01) oc /(0, IY)P(19, (8)

where p(0, ) is the joint prior density of the parameters 0 and 1. On the assumption

that priors of 0 and are independently distributed with probability density functions

p(0) and p(), the item parameter estimation part which maximizes /(0r, )p() and the

ability parameter estimation part which maximizes /(913r, 4)p(0) are iterated to obtain stable

estimates of item and ability parameters.

Alternatively, Bock and Aitken (1981), Bock and Lieberman (1970), Harwell, Baker, and

Zwarts (1988), and Tsutakawa (1984) presented estimation of by maximization of the

marginal or integrated likelihood in Equation 5. The development of marginal maximum

likelihood estimation was motivated by the structural and incidental parameters problem

(Baker, 1987). Assuming that the IRT model and the ability distribution are properly

specified, the resulting item parameter estimates are consistent for tests of finite length

(Bock & Aitkin, 1981).

Since the marginal likelihood in Equation 5 is not a probability density function, we

cannot make a probabilistic statement regarding We can accomplish this by analyzing

the marginal posterior distribution in Equation 6 (e.g., Harwell & Baker, 1991; Leonard
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& Novick, 1985; Mislevy, 1986; Tsutakawa, 1992; Tsutakawa & Lin, 1986). The posterior

density represents a compromise between the likelihood and the prior density. Hence, an

important element of Bayesian inference is the prior information concerning In Bayesian

analysis it is necessary to have a convenient way to quantify such information.

Prior and Posterior Distribution

Prior information for parameters is expressed in terms of probability distributions in the

Bayesian approach. It can be noted that a flexible family of prior distributions is available

by transforming item parameters into new parameters which may be distributed as a

multivariate normal distribution. Following Leonard and Novick (1985) and Mislevy (1986),

we use the transformation ai = log ct.7. We may also write /3 = b3 and s = (aj,133)'.

We assume that the vector of item parameters possesses a multivariate normal

distribution conditional on the respective mean vector pe and covariance matrix Ec. The

complete form of the hierarchical prior distribution of item parameters is given by

p(C = Wn)p2(n), (9)

where the hyperparameter rl = (p.c, Ec), and the subscripts 1 and 2 denote the first stage

and the second stage, respectively, of the prior distribution.

If we assume the vectors of item parameters a and are independent, we can take the

vectors to possess independent multivariate normal distributions, conditional on their mean

vectors, pc, and pm and covariance matrices, Ec, and Ep. Then

(177)p2(n) = (a ?OM (017/0)P2(77a)P2(7)0), (10)

where nc, = (g, Ec,) and 77,3 = (izo,E0).

When we further assume exchangeability for all parameters, we may take pa =
Ea QaIn, = po1, and E0 = opri, where pa, o-a2 , ito, and are scalars, 1 is an n x 1

vector of ones, and In is an identity matrix of order n (Leonard & Novick, 1985). The first

stage prior distribution can be expressed as

where

n

= 11 Pi (ai 0-Dpi(Oilpo, 0-20),
j=1

1

pi (cej La«, ac,2)
(2,70.,a2)-1/2

2aci
//,)2}

6
8

(12)



and Pi(031,120, a) can be similarly defined. A hierarchical Bayes approach then assigns

another stage priors to the hyperparameter

Hyperpriors for pc, and ac, can be specified by assuming that pc, has a noninformative

uniform distribution and vc,A,,,/o-c, is distributed as x,2., where vc, is the degrees of freedom.

Hence,

r(vc,/2)(vAcE/2)-11a/2P2(10 = P20ict)p2(act2 Iva,
Act) (o-c2t)(va/2+1)

exp
yak,

2 a
(13)

where va and Aa are hyperhyperparameters. Now the prior distribution for a can be
expressed as

Pi(celna)p2(ria) =
1 n

\ 2 v
(0.(1)(vc,/2+1)

, exp ( Aa(2710-a2) 71/2 exP Dai Pal r(va/2)(vcdta/2)va/B V;(7,2 j{
2cr!

(14)

The above equation depends upon nuisance parameters, pct and ca, and these can be

integrated out. Integrating out pc, and ol yields

(n±vc, 1)/2
[co

Jo
P1 Oa Ina)P2 (na)dttada,2 = p(a Iva, Ac,) oc {E(aj CE)2 ± yak, . (15)

-co J=1

Similar specification yields p(33lv , A0). As we integrated out the hyperparameter we can

express the prior distribution of item parameters as

PO/(2)) = P(ctiva, A)P(Olun, An), (16)

where the hyperhyperparameter n(2) = (vc Ac,, v0, A0).

In fact, the complete prior for the hierarchical model, assuming independence between

ability and item parameters, can be written as

p(9, r) 77) = P(0 T)P(C 7)) =p1(017-)p2(T)pi(SI r7)P2(77), (17)

where p1(91T) is the first stage density of 9 conditional on T, T are examinee population

parameters which takes the second stage density p2(r), pl ( 1 n) is the first stage density of

conditional on 71, and n are item population parameters which follows the second stage

density p2(q) (Mislevy, 1986). In this paper, we assumed r = (i.to, = (0, 1) is given and

= E) is integrated out. The prior distribution of both item and ability parameters

given r and the hyperhyperparameter n(2) can be written as

goir)p(oi(2))

7
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The marginal posterior distribution given r and n(2) is then

P(SIY, 7) 77(2)) cx P(3,1C T)P0/(2)) = /(13r, 7-)P(17/(2)). (19)

Marginal Bayesian modal estimates of item parameters can be found by maximizing the

marginal posterior distribution with respect to Appendix presents a brief description of

procedures for implementation of the marginal Bayes modal estimation with the two-stage

hierarchical priors.

Method

Data were simulated under the following conditions: (1) number of examinees (N =

100, 300), (2) number of items (n = 15, 45), (3) estimation (HB2, MB, ML), and (4)

prior condition (prior-aL, prior-aT, prior-a/3T). The sample sizes and the test lengths were

selected to emulate the situation in which estimation procedures and priors might have some

impact upon item and ability parameter estimates. The sample size and the test length were

completely crossed to yield four situations.

Three estimation procedures were used; the two-stage hierarchical Bayes estimation

(HB2), the marginal Bayesian with known hyperparameters (MB), and marginal maximum

likelihood estimation (ML). The two Bayes estimation procedures, HB2 and MB, had the

three prior conditions: prior-aL, prior-aT, and prior-a/3T. The prior-aL condition used a

loose prior for the transformed item discrimination; the prior-aT condition used a tight prior

for the transformed item discrimination; and the prior-a/3T condition used tight priors for

both the transformed item discrimination and the item difficulty. The exact specification of

each prior condition is presented in a subsequent section on the item and ability parameter

estimation. ML, of course, did not employ a prior distribution in estimation.

Data Generation

The data sets used in this study were the same as those used in Kim et al. (1994).
Dichotomous item response vectors were generated using the two-parameter logistic model

via the computer program GENIRV (Baker, 1982). Based on the usual ranges of

item parameters for the two-parameter logistic model, the underlying transformed item

discrimination parameters were assumed to be normally distributed with mean 0 and variance

.09, aj N(0, .09). The underlying item discrimination parameters aj are distributed with



mean 1.046 and variance .103. The underlying item difficulty parameters are distributed

normally with mean 0 and variance 1, bj ti N(0, 1). For data generation purposes,

an approximation based on histograms was adopted instead of selecting item parameters

randomly from a specified distribution. Item discrimination and item difficulty parameters

for the 15-item test were set to have three different values (the number of items is given

in parentheses): Item discrimination parameters were .66 (4), 1 (7), and 1.51 (4), and item

difficulty parameters were 1.38 (4), 0 (7), and 1.38 (4). For the 45-item test, each of the

item parameters was set to have five different values: Item discrimination parameters were

.57 (4), .76 (9), 1 (19), 1.32 (9), and 1.77 (4), and item difficulty parameters were 1.9 (4),

.95 (9), 0 (19), .95 (9), and 1.9 (4). There was no correlation between item discrimination

and difficulty parameters.

The underlying ability parameters were matched to the item difficulty distribution.

Hence, a normal distribution with mean 0 and variance 1, Oi N(0, 1), was used to specify

the underlying ability parameters. Also, an approximation based on histograms was adopted

for ability and yielded 11 ability levels. For the 100-examinee sample, the ability parameter

were set to be 2.5 (1), 2 (3), 1.5 (7), 1 (12), .5 (17), 0 (20), .5 (17), 1 (12), 1.5 (7),
2 (3), and 2.5 (1), where parentheses contain the number of examinees. For 300-examinee

sample, the ability parameters were set to be 2.5 (4), 2 (8), 1.5 (20), 1 (36), .5 (52),

0 (60), .5 (52), 1 (36), 1.5 (20), 2 (8), and 2.5 (4).

For each of the factors of sample size and test length, four replications of the simulated

data were generated. Since the two factors were completely crossed, a total of 16 GENIRV

runs was needed to obtain the data sets for the study.

Item and Ability Parameter Estimation

Each of the generated data sets was analyzed via the computer program BILOG (Mislevy

& Bock, 1990) for the MB and ML procedures and via the computer program HBAYES,

specifically developed for this study to provide the HB2 estimates. In each Bayes estimation

procedure, three prior conditions, prior-aL, prior-aT, and prior-a/3T, were employed. Note

that a prior was not employed in ML. Hence, for example, the generated item response data

set for the first replication of sample size 100 and test length 15 was analyzed by seven

computer runs (two Bayes estimation procedures with three prior conditions and maximum

likelihood estimation).

In the prior-aL condition for MB, a lognormal prior with mean 0 and variance .25 was



f

used, that is, In a3 rs, N(0, .25). This is, in fact, the default prior specification in BILOG

for the estimation of item parameters of the two-parameter logistic model. In the prior-aT

condition for MB, a lognormal distribution with mean 0 and variance .09, In N(0, .09),

was used. For the prior-a/3T condition for MB, the same prior in the prior-aT condition

along with a normal prior was used for the item difficulty with mean 0 and variance 1,

/33 N(0, 1).

For HB2, the mean hyperparameter was assumed to have a noninformative uniform

distribution and the variance hyperparameter was set to have an inverse chi-square
distribution. In the prior-aL condition, the inverse chi-square distribution with v, = 8 and

A, = .25 was used for the variance hyperparameter of the transformed item discrimination

parameters: va A,/o-2 x and, thus, 2/a rs, A. The inverse chi-square distribution with

parameters v, = 8 and A, = .09 was used in the prior-aT condition: .72/al rs, xi. Two

inverse chi-square distributions with parameters va = 8 and A, = .09, and vo = 8 and

.gyp = 1 for the variance hyperparameters of the transformed item discrimination and of the

item difficulty, respectively, were adopted for the prior-a/3T condition: .72/o xi and
8/o- rs, xi.

When the mean hyperparameter is assumed to have a fixed value, the specification

of the variance hyperparameter by the inverse chi-square distribution with parameters v

and A (i.e., vA/a2 ti Xv2) yields the parameter of interest which is distributed as a t with

mean pt, variance A, and degrees of freedom v, t(v, A) (Berger, 1985). Therefore, for the

transformed item discrimination, assuming the mean hyperparameter pa has a fixed value,

specification of the hyperparameter of variance by the inverse chi-square with v, = 8 and

A, = .25 yields a transformed item discrimination parameter which is distributed as a t

with mean p,,, variance A, = .25, and degrees of freedom v, = 8, that is, a3 rs, t(8, bta, .25).

Similarly, the specification with v, = 8 and A, = .09 implies ai t(8, /2, .09); and the

specification with vo = 8 and Ap = 1 yields /3 t(8, /to, 1). In the above illustration,

because we assumed a noninformative prior for the mean hyperparameter, the specifications

used in HB2 will not produce the same specifications of item hyperparameters used in MB.

These specifications are similar to their counterparts in MB.

Metric Transformation

In parameter recovery studies, such as the present one, comparisons between two or more

sets of estimates and the underlying parameters require that the item and ability estimates



obtained from different calibration runs and their parameters be placed on a common metric

(Baker & Al-Karni, 1991; Yen, 1987). Parameter estimation procedures under IRT yield

metrics which are unique up to a linear transformation. To link both sets of estimates and

parameters, it is necessary to determine the slope and intercept of the equating coefficients

required for the transformation. The estimates of the item and ability parameters for each

of the estimation procedures were placed on the scale of the true parameters using the test

characteristic curve method by Stocking and Lord (1983) as implemented in the computer

program EQUATE (Baker, 1993).

Criteria

The empirical evaluation in this study involved four criteria: root mean square difference

(RMSD), correlation, and bias, and mean euclidean distance (MED). RMSD is the square

root of the average of the squared differences between estimated and true values. For item

discrimination, for example, RMSD is {(1/n) E731=.1(aj aj)

The bias B of a point estimator is the difference between the expected value of the

estimates and the corresponding parameter (Mendenhall, Scheaffer, & Wacker ly, 1981). The

bias of the item discrimination estimates, for example, is given by Ba, = E(et3) a3. The

bias was obtained with regard to the underlying parameters across the four replications.

Since it is possible that an estimation procedure may function better at recovery of one

type of item parameter than at recovery of the other, it is also useful to consider a single

index which can describe simultaneously the quality of the recovery for both item parameters.

MED provides such an index (Rudin, 1976). MED is the average of the square roots

of the sum of the squared differences between the discrimination and difficulty parameter

estimates and their generating values. MED is defined as (1/n) E=1 {(4j C)'(43 C)}1/2.7 ,

where = Ca3, bir and = (a3, b3)'. One caveat in using MED, of course, is that item

discrimination and difficulty parameters are not expressed in comparable and interchangeable

metrics. Even so, MED does provide a potentially useful descriptive index.

Results

RMSD and Correlation Results

Item Discrimination. Average RMSDs of item discriminations over four replications are

reported in Table 1. As sample size increased, RMSDs decreased; marginal RMSD means

were .265 and .185 for sample sizes 100 and 300, respectively.

11
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Insert Table 1 about here

Two Bayes procedures, HB2 and MB, yielded smaller RMSDs than the ML procedure.

For sample size 100, increasing the number of items increased the values of RMSD for HB2

but reduced the values of RMSD for ML. Increasing the number of items reduced the size

of RMSDs for sample size 300. When the loose prior, aL, was used in HB2 for sample size

100, it yielded comparatively smaller values of RMSD than did either of the tight prior

conditions. The tight prior condition, aT, in MB yielded smaller values of RMSD. There

seem to be no differences among RMSDs when the tight prior conditions, aT and a/3T, were

used for sample size 300.

The average correlations between true and estimated values of item discriminations across

four replications are also given in Table 1. For each data set, HB2 yielded a slightly higher

correlation than MB and ML. Generally, the larger the sample size, the higher the correlation.

Also, increasing the number of items tended to produce higher correlations. For the three

prior conditions used, no definitive tendency was observed in the correlations.

Item Difficulty. Table 2 contains the average RMSDs for item difficulty over four

replications. An increase in sample size appeared to be associated with a decrease in the

size of RMSDs. For sample size 100, increasing the number of items appeared to slightly

decrease RMSDs except for ML. For sample size 300, increasing the number of items 15 to

45 resulted in larger values of RMSD. The values of RMSD from ML were consistently larger

than the values from HB2 and MB regardless of sample sizes or test lengths.

Insert Table 2 about here

Prior-a/3T condition yielded a relatively smaller RMSDs than did either prior-aL or

prior-aT conditions. HB2 consistently yielded smaller RMSDs than MB across all the prior

conditions employed.

For each data set, all estimation procedures yielded nearly the same correlations between

estimates and parameters (see Table 2). Generally, the larger sample sizes yielded higher

correlations. Increasing the number of items yielded slightly higher correlations for 100-

examinee data sets. This tendency was not observed for 300-examinee data sets. There



seemed to be no definitive trends in the correlations among the three prior conditions. ML

yielded consistently lower correlations than did either HB2 or MB. It can be noticed, however,

that all correlations were very high and close to 1.

Bias Results

Item Discrimination. The bias results for item discrimination, presented in Figure 1, appear

to reflect influence by a number of factors. Each bias statistic was obtained by combining

results from all four replications together.

Insert Figure 1 about here

For each test length, increasing sample size resulted in a decrease in bias values. In

general, when Bayes estimation procedures were used, positive bias values were observed for

the smaller item discrimination parameters (i.e., a3 = .66 for the 15-item test, and a3 = .57

and .76 for the 45-item test) due to regression toward the mean of the prior distribution.

Conversely, negative values of bias were obtained for the relatively larger item discrimination

parameters (i.e., a3 = 1.51 for the 15-item test, and aj = 1.32 and 1.77 for the 45-item test).

This shrinkage effect can be observed for nearly all data sets for HB2 and MB. HB2 yielded

slightly more biased results.

Both tight prior conditions yielded relatively more biased results. The patterns of bias

from HB2 and MB were very similar. ML yielded different patterns of bias than did the

HB2 and MB procedures. The differences in bias patterns between ML and the two Bayes

procedures were very pronounced in sample size 100. The differences diminished as the

sample size increased to 300.

Item Difficulty. The bias results for item difficulty are reported in Figure 2. The pattern

of results was somewhat different from that for item discrimination. For the 15-item test,

all estimation procedures yielded nearly the same pattern of no bias. For the 45-item test,

the three estimation procedures also resulted in nearly the same pattern of no bias for HB2,

MB, and ML. For sample size 300, the patterns show nearly no bias results. Sample size 300

yielded relatively more stable bias results than sample size 100.

Insert Figure 2 about here



MED Results

Average MEDs between item parameter estimates and underlying item parameters over four

replications are reported in Table 3. HB2 and MB yielded smaller MEDs than ML. For

sample size 300, HB2 yielded smaller MEDs than MB under prior-al, whereas HB2 yielded

larger MEDs than MB under both prior-aT and prior-a/3T. For sample size 300, HB2 yielded

consistently smaller MEDs than MB for all prior conditions. Also for sample size 300, the

tight priors condition, a/3T, yielded relatively smaller MEDs within each Bayes estimation.

It can be noticed from Table 3 that MEDs decreased as the sample size increased. Increasing

the number of items reduced the sizes of MED.

Insert Table 3 about here

Discussion

Maximum likelihood approaches in IRT suffer from a number of problems, an important

one for the two-parameter logistic model being the possibility that outward drift of item

discrimination estimates occurs and, consequently, unreasonable values will be obtained for

parameter estimates. In addition, these approaches perform poorly when estimating item

and ability parameters for unusual response patterns such as all correct or all incorrect

answers. These problems have led to interest in the development of Bayesian approaches for

estimation of item and ability parameters (Baker, 1987). In the present study, we used a

recovery study approach to compare parameter estimates for the two-parameter logistic IRT

model obtained via the two marginal Bayesian algorithms, HB2 and MB, and the maximum

likelihood algorithm, ML.

Analysis of item parameter recovery results indicated that HB2 and MB yielded

parameter estimates which were generally better than those obtained from ML. RMSD

and MED results for item discrimination and difficulty were consistently larger for the ML

estimates than for the HB2 and MB estimates. HB2 and MB estimates were similar although

HB2 results were slightly better for prior-aL and MB results were better for the tight prior

conditions.

When N = 300, there seems to be essentially no bias in item discrimination estimates

yielded by either HB2 or MB. Note that under ML, except for N = 100 and n = 45 data

sets, there found positive values of bias for large values of item discrimination (1.51 when

14
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n = 15 and 1.77 when n = 45). It should be noted that no incidence of nonconvergence

due to outward drift of discrimination estimates occurred in ML for entire data sets. The

bias results from item difficulty were almost identical for all estimation procedures and

prior conditions. ML of course did not employ a prior distribution. All prior conditions

contain a prior for item discrimination. Only prior-af3T contained an additional prior for

item difficulty. Many recovery studies indicate relatively excellent recovery results of item

difficulty parameters. This might be a possible explanation why we have the same pattern

of bias of item difficulty regardless of estimation procedures.

Both the shape and the variance of the prior distribution play a part in the Bayesian

estimation of parameters. The more informative the prior, that is, the smaller the variance,

the more the parameter estimate tends to be pulled toward the mean of the prior. In general,

the use of tight priors seems appropriate when there is strong a priori information about

the parameters. In the MB context, the same prior distributions were directly imposed on

item parameters. Without the use of the empirical Bayes (i.e., FLOAT) option, the incorrect

specification of the prior may result in more serious consequences for MB than HB2. Mislevy

and Stocking (1989) recommended the use of the FLOAT option in BILOG when there is a

possibility of mismatch between the expected value of item parameters and the prior mean.

This issue was not tested in the present study because priors were relatively well matched

to the generated data sets. In this regard, several issues remain to be studied in the present

context. In particular, except Gifford and Swaminathan (1990) and Harwell and Janosky

(1991), little has been done on the shrinkage effect. Neither are the effects of priors well

known with respect to the robustness of the two-stage hierarchical model or other Bayes

procedures. This kind of research is particularly valuable for small samples and short tests.

A prior distribution represents what is known about the parameter before the data are

obtained. Consequently the role of the prior distribution is central in Bayesian analysis. The

prior used in the Bayes procedures in this paper assumes independence and exchangeability

among all item parameters. Sometimes dependence between item parameters should be

considered. In this regard, Mislevy (1986) presented multivariate normal priors to account

for dependency within item parameters. In addition, if the exchangeability of items cannot

be exercised, we cannot use the same prior distribution for each item. Assuming all item

parameter estimates and the corresponding estimated variance and covariance matrices from

previous and possibly different calibrations were placed on the same ability metric, for



example, on the usual ability N(0,1) metric, we can employ a different prior distribution for

each item based upon existing information regarding the underlying item parameters.

In a usual Bayesian approach, prior distributions are used for the ordinary or transformed

item parameters. To represent prior information of item parameters in terms of the item

response function, confidence ellipsoids suggested by Thissen and Wainer (1990) can be

helpful. In the two-stage hierarchical approach, we specified prior information on the

hyperparameters. An alternative approach is to use a prior distribution based on entire

item response function rather than item parameters. Tsutakawa and Lin (1986) suggested

the use of an ordered bivariate beta prior distribution for values of the item response function

at two ability levels. Also Tsutakawa (1992) suggested the use of the ordered Dirichlet prior

on the entire item response function.

Note that the posterior density of hyperparameters may be closely approximated. For

example, let R denote the 2n x 2n posterior information matrix (R = H), consisting of

appropriate second derivatives of log p(a, 013') and evaluated at the marginal modes. Then

the dispersion matrix R-1 provides an approximation to the posterior covariance matrix.

In stead of estimating the prior parameters pc tea, p , and 4, following Leonard (1982),

Leonard, Hsu, and Tsui (1989), and Tierney and Kadane (1986), we can approximate the

posterior density of these hyperparameters by the Laplacian approximation

p(tta, ac,,kto, 41y) oc p(µ., 4µo, 0-Pp(a, (20)

Two possible choices of distribution for the prior parameters are the uniform distribution

p(µ,, u,o, oc 1, and the choice from Lindley and Smith (1972) which is

(v./2+1) (113/2-1-1)
P(Act, Cra2; AO) UP (X (oral exp v, a/2o-a2 voAo/2o-} , (21)

which takes all four hyperhyperparameters are independent, pa and go each to be uniformly

distributed over (oo, oo), and vA/o-c, and voAo/o-26 to possess chi-square distribution with

respective degrees of freedom v, and vo. This permits the specification of prior means A and

A for o-a-2 and o-0 2 based on previous distribution information, together with prior sample

sizes for al, and 4. It should be noted that important sampling (Hsu, Leonard, & Tsui,

1991) and the Gibbs sampler (Gelfand & Smith, 1990) also can be applied to this situation.

Comparisons among the above method and other Bayes approaches are needed to provide

guidelines for using Bayes methods under IRT.
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Conclusion

Many estimation methods have been introduced for estimating item and ability parameters

in the context of IRT. There is still a great need for efficient algorithms of the Bayesian

approach. In this paper, a procedure is presented for obtaining marginal Bayesian estimates

of item parameters with a two-stage hierarchical prior distribution for dichotomously scored

IRT models. When the procedure is applied to the simulated data, the item parameter

estimates from HB2 are found to agree with estimates from MB.



Appendix

In order to estimate the unknown item parameters, the logarithm of the marginal posterior

distribution, log p( 13r) 7) 71(2)) CX log 1( ly, T) ± log p(177(2)) = F , is maximized by taking

partial derivatives with respect to the item parameters and setting them equal to zero. The

resulting equations represent the marginal Bayesian estimation equations for item parameters

with two-stage priors. As is the case for the maximum likelihood or the nonlinear least

squares estimator, we cannot generally solve the estimation equations explicitly for item

parameters. Instead, we must solve them iteratively. The Newton-Raphson method and

some of its modifications can be used for this purpose (Kennedy & Gentle, 1980). The

Newton-Raphson method requires use of both the gradient vector and the Hessian matrix in

computations:

where

(t) ( t 1)

= 1-1( t-1) 1-1 et-1),

f(t-i) aF

11(t-1) = a2Fave

(22)

(23)

(24)

and t indexes the iteration. The iteration is repeated until the convergence criterion is met.

Since the dimensionality of all terms in the Newton-Raphson equation is order of 2n,

when the number of items is large, matrices and vectors of considerable size result. These

are beyond the capabilities of most digital computers and ways to reduce the dimensionality

must be found. We can accomplish this using the EM algorithm (Bock & Aitkin, 1981;

Dempster, Laird, & Rubin, 1977). We assume that items are independent, hence, the

estimation proceeds one item at a time. The Newton-Raphson equation becomes

{Hr1) -1 0-1). (25)

The individual elements which are needed in the Newton-Raphson iteration for the HB2

procedure using the Gaussian quadrature formula are given in Table A.

Insert Table A about here



Note that fik and Njk in Table A are defined as

jk = E yiip(xk iyi, T)
i=1

Njk = EP(XklYi) 7))

and

i=1

where

(26)

(27)

r-r_, P3(X k)Yii Q j(X01-Y2j A (Xk
P(XklYz, r) = 3 (28)

1-17=1 P3 (X0Y2i C2i(Xk)l-Y,3 A(Xk)

Based on provisional item parameter estimates 4, obtaining f3k and Njk is the expectation

(E) step of the EM algorithm. The maximization (M) step is to solve the Newton-Raphson

equation for each item using obtained provisional 973k and Njk (Bock & Aitkin, 1981; Bock,

Mislevy, & Thissen, 1991). The EM cycles are continued until we obtain a stable set of item

parameter estimates.

The EM solution may not provide an estimate of the posterior dispersion matrix.

Therefore, to obtain the dispersion matrix, we need to solve the marginal Bayesian estimation

equations after obtaining item parameter estimates from the converged EM solution. In this

case the 2n x 2n Hessian matrix is

1 ap(y,ICT) ap(yi1C7)} a2 logp07(2))H = E , + (29)
2=113(Yg, T) ( ave

The summation in the Hessian matrix, however, involves all examinees and may not be

practical to use. When we reformulate the response matrix into distinctive response patterns

and the corresponding frequencies, the Hessian matrix may become feasible to calculate.

For practical purpose, we can further approximate the Hessian matrix with the use of the

empirical information matrix (Bock, Mislevy, & Thissen, 1991). We may need only one or

two Newton-Raphson iterations to improve almost converged item parameter estimates of

the EM solution.
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Table 1
Root Mean Square Differences (RMSD) and Correlation of Item Discrimination

Averaged Over Four Replications

Hierarchical Bayesian-2
Sample Item Prior-aL Prior -aT Prior-0T

RMSD 100 15 .225 .251 .246
100 45 .233 .276 .276
300 15 .192 .186 .185
300 45 .161 .159 .160

Correlation 100 15 .673 .673 .691
100 45 .688 .686 .693
300 15 .820 .824 .823
300 45 .864 .866 .866

24 26

Marginal Bayesian
MLPrior-aL Prior -aT Prior-OT

.255 .227 .238 .412

.255 .231 .238 .348

.205 .183 .186 .254

.181 .159 .161 .216

.667 .671 .644 .657

.679 .682 .671 .676

.819 .823 .818 .815

.863 .865 .863 .860



Table 2
Root Mean Square Differences (RMSD) and Correlation of Item Difficulty

Averaged Over Four Replications

Hierarchical Bayesian-2 Marginal Bayesian
Sample Item Prior-aL Prior-aT Prior-OT Prior-aL Prior -aT Prior-a/3T ML

RMSD 100 15 .309 .315 .297 .315 .316 .308 .334
100 45 .284 .290 .269 .298 .287 .277 .352
300 15 .164 .159 .151 .174 .163 .161 .207
300 45 .187 .184 .177 .197 .186 .184 .224

Correlation 100 15 .951 .956 .958 .955 .955 .955 .950
100 45 .963 .962 .964 .958 .962 .963 .942
300 15 .988 .989 .990 .987 .989 .989 .981
300 45 .983 .983 .984 .981 .983 .983 .975



Table 3
Mean Euclidean Distances (MED) Averaged Over Four Replications

Sample Item
Hierarchical Bayesian-2 Marginal Bayesian

MLPrior-aL Prior-CT Prior-a/3T Prior-aL Prior-aT Prior-a/3T
100 15 .335 .355 .343 .359 .332 .330 .451
100 45 .320 .342 .331 .344 .322 .317 .423
300 15 .222 .212 .205 .234 .212 .211 .268
300 45 .214 .211 .209 .230 .213 .212 .262

26



Table A
First and Second Derivatives of the Log Posterior Distribution for HB2

Parameter Contribution First Derivative Second Derivative

aj Likelihood exp(ai) Epck { fik Nja);(xk)} exp(2%) E(Xk o.i)2PivogivoNik
k=1 k=1

1 1 r 1) 2(aj
a)2a Prior (aj a) s4 1 n n+ 1fa

Likelihood exp(aj) E NikPivol _exp(2aj)E (x.k)Q3 (xoNik
k=1 k=1

1 { s20(n 203i 13)2 }
Prior -0)so s40 n n + vs 1

ait3i Likelihood exp(2aj)E(Xk i3i)Pi(Xk)(2i(Xk)Njk
k=1

where s2c, =

a)2 vodta

n + 1

n

,5)2 + 1),A0

a= n-1 Ece3, s20 = j=1
n+ u p 1

, and ig = n-1 E
j=i j=i
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Figure Captions

Figure 1. Bias plots for item discrimination.

Figure 2. Bias plots for item difficulty.
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